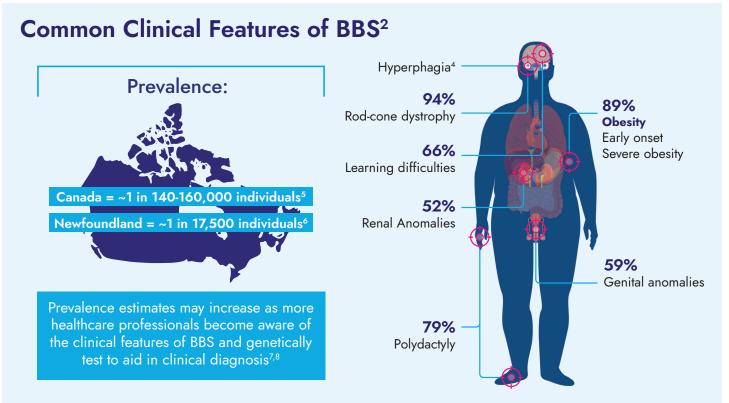

Rhythm[®]

DISEASE EDUCATION


Bardet-Biedl Syndrome

What is **BBS**?

Bardet-Biedl syndrome (BBS) is a rare ciliopathy, resulting from genetic variants within the BBS family of genes. This heterogeneous genetic disease presents with a variety of symptoms that evolve over time, including:¹⁻³

Solomon, living with BBS

Percentages represent frequency of feature appearance among individuals diagnosed with BBS.

How is BBS diagnosed?

More than 20 genes associated with BBS are involved in the melanocortin-4 receptor (MC4R) pathway.^{1,2,9-12} Genetic testing can help provide additional diagnostic information and can confirm a clinical diagnosis.¹³

The following criteria have been used to help diagnose BBS. According to these criteria, diagnosis is based on the presence of a combination of features.^{1,14}

Common features

- Rod-cone dystrophy
- Polydactyly
- Obesity
- Genital anomalies
- Renal anomalies
- Learning difficulties

Other features

- Speech delay or speech impairments
- Developmental delay
- Diabetes mellitus
- Dental anomalies
- Left ventricular hypertrophy or congenital heart disease
- Mild spasticity (especially lower limbs)
- Brachydactyly or syndactyly
- Strabismus, cataracts, or astigmatism
- Ataxia or poor coordination
- Anosmia or hyposmia
- Polyuria or polydipsia
- Hepatic fibrosis

BBS patients are treated and monitored based on individual symptoms^{1,2}

BBS has a highly variable phenotype with common features that evolve over time^{13,15,16}

	Birth	First years of life (0-5 years)	Early childhood (>5 years)
Postaxial polydactyly^{2,13,17-19} (63%-81%)	Extra digits (postaxial)	Typically surgically removed	
Renal anomalies^{2,13,20}	Anatomical	Progressive kidney	Polyuria/
(52%)	malformations	diseases	Polydipsia
Obesity^{3,4,13}	Normal birth weight	Rapid weight gain	Severe obesity
(72%-86%)		Unusual food seeking	Hyperphagia persists
Cognitive impairment ^{13,14}		Developmental	Learning
(>50%)		delay	difficulties
Visual impairment^{13,21} (93%)			Progressive vision loss Night blindness

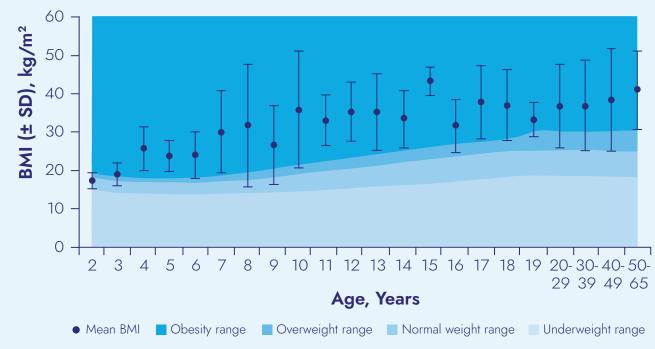
Obesity in BBS

- Obesity can begin in childhood and can increase in severity with age²
- Obesity may have a detrimental impact on long-term health, due to its association with increased morbidity, social stigma, and reduced quality of life²²
- Hyperphagia may contribute to obesity in patients with BBS^{4,23}

Hyperphagia is generally characterized by the following:^{4,24}

Insatiable hunger

- Heightened and prolonged hunger
- Longer time to reach satiation
- Shorter duration of satiety



Excessive drive to eat

- Severe preoccupation with food
- Persistent food-seeking behaviors (eg, stealing food, night eating, eating food from the trash)

Distress and functional impairment due to denial of food

Mean Body Mass Index (BMI) of Patients With BBS by Age²⁵

Figure adapted with permission from Marshfield Clinic Research Institute, the research division of Marshfield Clinic Health System.

References

- 1. Forsythe E, Kenny J, Bacchelli C, Beales PL. Managing Bardet-Biedl syndrome-now and in the future. Front Pediatr. 2018;6:23.
- Forsythe E, Beales PL. Bardet-Biedl Syndrome. 2003 Jul 14 [Updated 2023 Mar 23]. In: Adam MP, Mirzaa GM, Pagon RA, et al., editors. GeneReviews[®] [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023. https://www.ncbi.nlm.nih.gov/books/NBK1363/.
- 3. Pomeroy J, Krentz AD, Richardson JG, et al. Bardet-Biedl syndrome: weight patterns and genetics in a rare obesity syndrome. Pediatr Obes. 2021;16(2):e12703.
- 4. Sherafat-Kazemzadeh R, Ivey L, Kahn SR, et al. Hyperphagia among patients with Bardet-Biedl syndrome. Pediatr Obes. 2013;8(5):e64-e67.
- Fighting Blindness Canada. Bardet-Biedl Syndrome. July 18, 2018. Accessed June 22, 2023. https://www.fightingblindness.ca/eyehealth/eye-diseases/bardetbiedl-syndrome/
- Green JS, Parfrey PS, Harnett JD, et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl J Med. 1989;321(15):1002-1009. doi:10.1056/NEJM198910123211503
- 7. National Organization for Rare Disorders. Bardet-Biedl syndrome. Accessed March 8, 2021. https://rarediseases.org/rare-diseases/bardet-biedl-syndrome/
- 8. Suspitsin EN, Imyanitov EN. Bardet-Biedl syndrome. Mol Syndromol. 2016;7:62-71.
- 9. Guo DF, Rahmouni K. Molecular basis of the obesity associated with Bardet-Biedl syndrome. Trends Endocrinol Metab. 2011;22(7):286-293.
- 10. Schaefer E, Delvallée C, Mary L, et al. Identification and characterization of known biallelic mutations in the IFT27 (BBS19) gene in a novel family with Bardet-Biedl syndrome. *Front Genet*. 2019;10:21.
- Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet. 2009;18(7):1323-1331.
- 12. Guo D-F, Cui H, Zhang Q, et al. The BBSome controls energy homeostasis by mediating the transport of the leptin receptor to the plasma membrane. *PLoS Genet.* 2016;12(2):e1005890.
- 13. Forsythe E, Beales PL. Eur J Hum Genet. 2013;21(1):8-13.
- 14. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet. 1999;36(6):437-446.
- Castro-Sánchez S, Álvarez-Satta M, Cortón M, Guillén E, Ayuso C, Valverde D. Exploring genotype-phenotype relationships in Bardet-Biedl syndrome families. J Med Genet. 2015;52(8):503-513. doi:10.1136/jmedgenet-2015-103099
- Katsanis N, Lupski JR, Beales PL. Exploring the molecular basis of Bardet-Biedl syndrome. Hum Mol Genet. 2001;10(20):2293-2299. doi:10.1093/ hmg/10.20.2293
- Khan OA, Majeed R, Saad M, Khan A, Ghassan A. Rarity of Laurence Moon Bardet Biedl Syndrome and its Poor Management in the Pakistani Population. Cureus. 2019;11(2):e4114. Published 2019 Feb 21. doi:10.7759/cureus.4114
- Agrawal H, Dokania G, Allen HD. Visual Diagnosis: Visual Impairment, Polydactyly, and Obesity: Red Flags in a Child. Pediatr Rev. 2018;39(5):e21-e23. doi:10.1542/pir.2017-0136
- 19. Vlahovic, A. M., & Haxhija, E. Q. (2017). Polydactyly. Pediatric and Adolescent Plastic Surgery for the Clinician, 89–105. doi:10.1007/978-3-319-56004-5_8
- 20. Putoux A, Attie-Bitach T, Martinovic J, Gubler MC. Phenotypic variability of Bardet-Biedl syndrome: focusing on the kidney. *Pediatr Nephrol.* 2012;27(1):7-15. doi:10.1007/s00467-010-1751-3
- 21. Weihbrecht K, Goar WA, Pak T, et al. Keeping an Eye on Bardet-Biedl Syndrome: A Comprehensive Review of the Role of Bardet-Biedl Syndrome Genes in the Eye. *Med Res Arch.* 2017;5(9):10.18103/mra.v5i9.1526. doi:10.18103/mra.v5i9.1526
- 22. Centers for Disease Control and Prevention. Childhood obesity causes & consequences. Accessed March 16, 2021. https://www.cdc.gov/obesity/childhood/ causes.html
- Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond). 2016;130(12):943-986.
- 24. Heymsfield SB, Avena NM, Baier L, et al. Hyperphagia: current concepts and future directions. Proceedings of the 2nd International Conference on Hyperphagia. Obesity (Silver Spring). 2014;22(suppl 1):S1-S17.
- Marshfield Clinic Research Foundation. Body mass index patterns in BBS. Accessed March 5, 2021. https://www.bbs-registry.org/bbs-news/body-mass-indexpatterns-in-bbs.

This information is provided by Rhythm Pharmaceuticals Canada (medinfo@rhythmtx.com). Last updated June 2023.

© 2023 Rhythm Pharmaceuticals, Inc. All rights reserved. Rhythm and its logo is a registered trademark of Rhythm Pharmaceuticals, Inc. CA-SET-2300043 11/2023

